Quick Links:


Moy, A., Merlet, C. and Dugne, O., 2015. Standardless quantification of Actinides by EPMA: Microscopy and Microanalysis 21(Suppl 3), Paper No. 1007, 3pp.


Javidani, M., Arreguin-Zavala, J., Danovitch, J., Tian, Y., and Brochu, M., 2017. Additive manufacturing of AlSi10Mg alloy using direct energy deposition: Microstructure and hardness characterization: Journal of Thermal Spray Technology 26, 587-597.

Ancient Ceramics, Pottery and Glazes

(see also Pigments, Paints and Paintings)

Colomban, P., 2013. Rocks as blue, green and black pigments/dyes of glazed pottery and enamelled glass artefacts – A review: European Journal of Mineralogy 25, 863-879.

Curewitz, D.C. and Foit Jr., F.F., 2018. Shards in sherds: Identifying production locations and exchange patterns using electron microprobe analysis of volcanic ash temper in northern Rio Grande Biscuit ware: Journal of Archaeological Science: Reports 18, 487-498.

De Vito, C., Medeghini, L., Mignardi, S., Coletti, F., and Contino, A., 2017. Roman glazed inkwells from the “Nuovo Mercato di Testaccio” (Rome, Italy): Production technology: Journal of the European Ceramic Society 37, 1779-1788.

Ionescu, C. and Höck, V., 2016. Electron Microprobe Analysis (EMPA): In The Oxford Handbook of Archaeological Ceramic Analysis, Hunt, A. (Ed.), DOI:10.1093/oxfordhb/9780199681532.013.17.

Kara, A. and Stevens, R., 2003. Interactions between a leadless glaze and a biscuit fired bone china body during glost firing—part III: Effect of glassy matrix phase: Journal of the European Ceramic Society, 23(10), 1617-1628.

Klesner, C., Stephens, J.A., Rodriquez-Alvarez, E., and Vandiver, P.B., 2017. Reconstructing the firing and pigment processing technologies of Corinthian polychrome ceramics, 8-6th centuries B.C.E.: Materials Research Society Symposium Proceedings, doi: 10.1557/adv.2017.257, 1889-1909.

Shalvi, G., Shoval, S., Bar, S. and Gilboa, A., 2019. On the potential of microbeam analyses in study of the ceramics, slip and paint of Late Bronze Age White Slip II ware: An example from the Canaanite site Tel Esur: Applied Clay Science: Reports 168, 324-339.

Shalvi, G., Shoval, S., Bar, S. and Gilboa, A., 2020. Pigments on Late Bronze Age painted Canaanite pottery at Tel Esur: New insights into Canaanite–Cypriot technological interaction: Journal of Archaeological Sciences: Reports 30, 102212, 18pp.

Shoval, S., 2018. The application of LA-ICP-MS, EPMA and Raman micro-spectroscopy methods in the study of Iron Age Phoenician Bichrome pottery at Tel Dor: Journal of Archaeological Sciences: Reports 21, 938-951.

Stephens, J.A., Vandiver, P.B., Hernandez, S.A., and Killick, D., 2015. The technological development of decorated Corinthian pottery, 8th to 6th centuries BCE: Materials Research Society Symposium Proceedings 1656, doi: 10.1557/opl.2015.838, 18pp.

Tseng, Y.-K. and Xu, B.-Y., 2012. An analysis of the gem-blue glaze of Ye Wang’s Koji pottery: Archaeometry 54(4), 643-663.

Uda, M., Kanno, H. and Mukoyama, T., 1999. Preliminary report on porcelain in Meissen (Germany) and Arita (Japan): Nuclear Instruments and Methods in Physics Research B 150, 597-600.

Walton, M.S., Svoboda, M., Mehta, A., Webb, S., and Trentelman, K., 2010. Material evidence for the use of Attic white-ground lekythoi ceramics in cremation burials: Journal of Archaeological Science 37, 936-940.

Ancient Glasses and Glass Beads

(see also Glass Identification)

Adlington, L.W., 2017. The Corning archaeological references glasses: New values for “old” compositions: Papers from the Institute of Archaeology 27(1), 1-8.

Angelini, I., Gratuze, B. and Artioli, G., 2019. Glass and other vitreous materials through history: European Mineralogical Union, Notes in Mineralogy 20, Chapter 3, 87-150.

Bandiera, M., Verita, M., Lehuede, P., and Vilarigues, M., 2020. The technology of copper-based red glass Sectilia from the 2nd century AD Lucius Verus villa in Rome: Minerals 10, 875; doi:10.3390/min10100875.

Barfod, G.H., Freestone, I.C., Lichtenberger, A., Raja, R., and Schwarzer, H., 2017. Geochemistry of Byzantine and Early Islamic glass from Jerash, Jordan: Typology, recycling, and provenance: Geoarchaeology 33, 623-640.

Bettineschi, C., 2017. Archaeometric Study of Egyptian Vitreous Materials from Tebtynis: Integration of Analytical and Archaeological Data: PhD Dissertation, Università degli Studi di Padova, 623-640.

Degryse, P. and Shortland, A.J., 2020. Interpreting elements and isotopes in glass: A review: Archaeometry 62, Suppl. 1, 117-133.

Gill, M.S. and Rehren, Th., 2014. The intentional use of lead-tin orange in Indian Islamic glazes and its preliminary characterization: Archaeometry 56(6), 1009-1023.

Lima, A., Medici, T., de Matos, A.P., and Verità, M., 2012. Chemical analysis of 17th century Millefiori glasses excavated in the Monastery of Sta. Clara-a-Velha, Portugal: Comparison with Venetian and façon-de-Venise production: Journal of Archaeological Science 39, 1238-1248.

Maltoni, S., Chinni, T., Vandini, M., Cirelli, E., Silvestri, A., and Molin, G., 2015. Archaeological and archaeometric study of the glass finds from the ancient harbour of Classe (Ravenna–Italy): New Evidence: Heritage Science 3:13 DOI 10.1186/s40494-015-0034-5.

Nakai, I., Numako, C., Hosono, H., and Yamasaki, K., 1999. Origin of the red color of Satsuma copper-ruby glass as determined by EXAFS and Optical Absorption Spectroscopy: Journal of the American Ceramic Society 82(3), 689-695.

Oikonomou, A., Henderson, J., Gnade, M., Chenery, S., and Zacharias, N., 2018. An archaeometric study of Hellenistic glass vessels: Evidence for multiple sources: Archaeological and Anthropological Sciences 10, 97-110.

Paynter, S., Okyar, F., Wolf, S. and Tite, M.S., 2004. The production technology of Iznik pottery—A reassessment: Archaeometry 46(3), 421-437.

Purowski, T., Dzierzanowski, P., Bulska, E., Wagner, B., and Nowak, A., 2012. A study of glass beads from the Hallstatt C-D from southwestern Poland: Implications for glass technology and provenance: Archaeometry 54(1), 144-166.

Purowski, T., Syta, O. and Wagner, B., 2019. Mycenaean and Egyptian faience beads discovered in southern Poland: Journal of Archaeological Science: Reports 28, 102023.

Schibille, N., 2011. Late Byzantine mineral soda high alumina glasses from Asia Minor: A new primary glass production group: PLoS ONE 6(4): e18970, 13 pp.

Schibille, N., Marii, F. and Rehren, Th., 2008. Characterization and provenance of Late Antique window glass from the Petra church in Jordan: Archaeometry 50(4), 627-642.

Shortland, A.J., Kirk, S., Eremin, K., Degryse, P., and Walter, M., 2018. The analysis of Late Bronze Age glass from Nuzi and the question of the origin of glass-making: Archaeometry 60(4), 764-783.

Shortland, A.J. and Schroeder, H., 2009. Analysis of first millennium BC glass vessels and beads from the Pichvnari necropolis, Georgia: Archaeometry 51(6), 947-965.

Siu, L., Henderson, J. and Faber, E., 2017. The production and circulation of Carthaginian glass under the rule of the Romans and the Vandals (Fourth to Sixth Century AD): A chemical investigation: Archaeometry 59(2), 255-273.

Smirniou, M., Rehren, Th., and Gratuze, B., 2009. Lisht as a New Kingdom glass-making site with its own chemical signature: Archaeometry 60(3), 502-516.

Sokaras, D., Karydas, A.G., Oikonomou, A., Zacharias, N., Beltsios, K., and Kantarelou, V., 2009. Combined elemental analysis of ancient glass beads by means of ion beam, portable XRF, and EPMA techniques: Analytical and Bioanalytical Chemistry 395, 2199-2209.

Velo-Gala, Garcia-Heras, M. and Ofila, M., 2019. Roman window glass in Hispania Baetica: Glass origin and manufacture study through electron microprobe analysis: Journal of Archaeological Science: Reports 24, 526-538.

Verita, M., Basso, R., Wypyski, M.T., and Koestler, R.J., 1994. X-ray microanalysis of ancient glassy materials: A comparative study of wavelength dispersive and energy dispersive techniques: Archaeometry 36(2), 241-251.

Verita, M., Bracci, S. and Porcinai, S., 2019. Analytical investigation of 14th century stained glass windows from Santa Croce Basilica in Florence: International Journal of Applied Glass Science 10, 546-557.

Vicenzi, E.P., Eggins, S., Logan, A., and Wysoczanski, R., 2002. Microbean characterization of Corning archaeological reference glasses: New additions to the Smithsonian microbeam standard collection: Journal of Research of the National Institute of Standards and Technology 107(6), 719-727.

Wagner, B., Nowak, A., Bulska, E., Hametner, K., and Günther, D., 2012. Critical assessment of the elemental composition of Corning archeological reference glasses by LA-ICP-MS: Analytical and Bioanalytical Chemistry 402, 1667-1677.

Wedepohl, K.H., Simon, K. and Kronz, A., 2011. Data on 61 chemical elements for the characterization of three major glass compositions in Late Antiquity and the Middle Ages: Archaeometry 53(1), 81-102.

Ancient Metals, Coins and Metallurgy

Baron, S., Tămaș, C.G., Rivoal, M., Cauuet, B., Télouk, P., and Albarède, F., 2019. Geochemistry of gold ores mined during Celtic times from the north-western French Massif Central: Nature, Scientific Reports, 9:17816,, 15 pp.

Bendall, C., 2003. The Application of Trace Element and Isotopic Analyses to the Study of Celtic Gold Coings and their Metal Sources: PhD Dissertation, Johann Wolfgang Goethe University, Frankfurt, 282 pp.

Birch, T., Westner, K.J., Kemmers, F., Klein, S., Hofer, H.E., and Seitz, H.-M., 2020. Retracing Magna Graecia’s silver: Coupling lead isotopes with a multi-standard trace element procedure: Archaeometry 62(1), 81-108.

Burger, E., Bourgarit, D., Wattiaux, A., and Fialin, M., 2010. The reconstruction of the first copper-smelting processes in Europe during the 4th and the 3rd millennium BC: Where does the oxygen come from?: Applied Physics A 100, 713-724. DOI 10.1007/s00339-010-5651-y

Chen, K., Liu, S., Li, Y., Mei, J., and Shao, A., 2017. Evidence of arsenical copper smelting in Bronze Age China: A study of metallurgical slag from the Laoniupo site, central Shaanxi: Journal of Archaeological Science 82, 31-39.

Doménech-Carbó, M.T., Di Turo, F., Montoya, N., Catalli, F., Doménech-Carbó, A., and De Vito, C., 2018. FIB-FESEM and EMPA results on Antoninianus silver coins for manufacturing and corrosion processes: Scientific Reports 8:10676, DOI:10.1038/s41598-018-28990-x.

Esty, W.W., Equall, N. and Smith, R.J., 1993. The alloy of the ‘XI’ coins of Tacitus: Numismatic Chronicle, 201-204.

Georgakopoulou, M., 2004. Examination of copper slags from the Early Bronze Age site of Daskaleio-Kavos on the island of Keros (Cyclades, Greece): Institute for Archaeo-Metallurgical Studies 24, 3-12.

Georgakopoulou, M., Bassiakos, Y. and Philaniotou, O., 2011. Seriphos surfaces: A study of copper slag heaps and copper sources in the context of Early Bronze Age Aegean metal production: Archaeometry 53(1), 123-145.

Healy, J., 1979. Mining and processing gold ores in the ancient world: Journal of Metals August, 11-16.

Jakielski, K.E. and Notis, M.R., 2000. The metallurgy of Roman medical instruments: Materials Characterization 45, 379-389.

Kaufman, B., 2013. Copper alloys from the ‘Enot Shuni cemetery and the origins of bronze metallurgy in the EB IV–MB II Levant: Archaeometry 55(4), 663-690.

Kaufman, B. and Scott, D.A., 2015. Fuel efficiency of ancient copper alloys: Theoretical melting thermodynamics of copper, tin and arsenical copper and timber conservation in the bronze age levant: Archaeometry 57(6), 1009-1024.

Kraft, G., Flege, S., Reiff, F., and Ortner, H.M., 2004. Investigation of contemporary forgeries of ancient silver coins: Microchimica Acta 145, 87-90.

Kraft, G., Flege, S., Reiff, F., Ortner, H.M., and Ensinger, W., 2006. EPMA Investigation of Roman Coin Silvering Techniques: Microchimica Acta 155, 179-182.

Kraft, G., Flege, S., Reiff, F., Ortner, H.M., and Ensinger, W., 2006. Analysis of the notches of ancient serrated denars: Archaeometry 48(4), 605-612.

Murillo-Barroso, M., Martinon-Torres, M., Massieu, D.C., and Socas, D.M., 2017. Early metallurgy in SE Iberia. The workshop of Las Pilas (Mojácar, Almería, Spain): Archaeological and Anthropological Sciences 9(7), DOI 10.1007/s12520-016-0451-8.

Notis, M., Shugar, A., Herman, D., and Ariel, D.T., 2007. Chemical Composition of the Isfiya and Qumran Coin Hoards, In Archaeological Chemistry: Analytical Techniques and Archaeological Interpretation. American Chemical Society, Washington, DC., 258-274.

Orfanou, V., Birch, T., Lichtenberger, A., Raja, R., Barfod, G.H., Lesher, C.E., and Eger, C., 2020. Copper-based metalwork in Roman to early Islamic Jerash (Jordan): Insights into production and recycling through alloy compositions and lead isotopes: Journal of Archaeological Science: Reports 33, 102519, 15 pp.

Orfanou, V. and Rehren, Th., 2015. A (not so) dangerous method: pXRF vs. EPMA-WDS analyses of copper-based artefacts: Archaeological and Anthropological Sciences 7, 387-397.

Radivojević, M. and Rehren, T., 2016. Paint it black: The rise of metallurgy in the Balkans: Journal of Archaeological Method and Theory 23, 200-237.

Radivojević, M., Rehren, T., Pernicka, E., Šljivar, D., Brauns, M., and Borić, D., 2010. On the origins of extractive metallurgy: New evidence from Europe: Journal of Archaeological Science 37, 2775-2787.

Sáenz-Samper, J. and Martinón-Torres, M., 2017. Depletion gilding, innovation and life-histories: The changing colours of Nahuange metalwork: Antiquity 91, 1253-1267.

Scott, D.A., 2011. The La Tolita-Tumaco culture: Master metalsmiths in gold and platinum: Latin American Antiquity 22(1), 65-95.

Shugar, A.N., 2000. Archaeometallurgical Investigation of the Chalcolithic Site of Abu Matar, Israel: A Reassessment of Technology and Its Implications for the Ghassulian Culture, Volume 1: PhD, Institute of Archaeology, University College London, 284 pp.

Shugar, A.N., 2003. Reconstructing the Chalcolithic metallurgical process at Abu Matar, Israel: Archaeometallurgy in Europe, International Conference, 24th-26th September, Milan, Italy, 449-458.

Westner, K.J., Birch, T., Kemmers, F., Klein, S., Hofer, H.E., and Seitz, H.-M., 2020. Rome’s rise to power. Geochemical analysis of silver coinage from the western Mediterranean (fourth to second centuries BCE): Archaeometry 62(3), 577-592.

Yamasue, E., Nagata, K. and Inazumi, T., 2014. Metallurgical evaluation of farmer’s steelmaking in Finland: Iron and Steel Institute of Japan 54(5), 1024-1029.

Zori, C.M. and Tropper, P., 2010. Late Pre-Hispanic and Early Colonial silver production in the Quebrada de Tarapacá, northern Chile: Boletín del Museo Chileno de arte Precolombino 15(2), 65-87.

Zori, C.M., Tropper, P. and Scott, D.A., 2014. Copper production in late prehispanic northern Chile: Journal of Archaeological Science 40, 1165-1175.


(see also Beam-Induced Element Mobility/Volatility)

Huh, M.C., 2013. Experimental determination of fluorine and hydrogen partitioning between apatite and basaltic melt: MS Geology UCLA, 56pp.

Marks, M.A.W., Wenzel, T., Whitehouse, M.J., Loose, M., Zack, T., Barth, M., Worgard, L., Krasz, V., Eby, G.N., Stosnach, H., and Markl, G., 2012. The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: An integrated analytical approach: Chemical Geology 291, 241-255.

Stock, M.J., Humphreys, M.C.S., Smith, V.C., Johnson, R.D., Pyle, D.M., and EIMF, 2015. New constraints on electron-beam induced halogen migration in apatite: American Mineralogist 100, 281-293.

Beam-Induced Element Mobility/Volatility

(see also Apatite)
(see also Light-Element Analysis)
(see also ZAF Correction and K-Ratio Optimization)
(see also Zircon)

Acosta-Vigil, A., London, D. and Morgan IV, G.B., 2005. Contrasting interactions of sodium and potassium with H2O in haplogranitic liquids and glasses at 200 MPa from hydration–diffusion experiments: Contributions to Mineralogy and Petrology 149, 276-287.

Borom, M.P. and Hanneman, R.E., 1967. Local compositional changes in alkali silicate glasses during electron microprobe analysis: Journal of Applied Physics 38, 2406-2407.

Campbell, L.S., Charnock, J., Dyer, A., Hillier, S., Chenery, S., Stoppa, F., Henderson, C.M.B., Walcott, R., and Rumsey, M., 2016. Determination of zeolite-group mineral compositions by electron probe microanalysis: Mineralogical Magazine 80(5), 781-807.

Devine, J.D., Gardner, J.E., Brack, H.P., Layne, G.D., and Rutherford, M.J., 1995. Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses: American Minteralogist 80, 319-328.

Guimarães, F., Silva, P.B., Ferreira, J., Piedade, A.P., and Vieira, M.T.F., 2014. Electron microprobe analysis of cryolite: Materials Science and Engineering 55, IOP Conference Series, 8 pp.

Hanson, B., Delano, J.W. and Lindstrom, D.J., 1996. High-precision analysis of hydrous rhyolitic glass inclusions in quartz phenocrysts using the electron microprobe and INAA: American Mineralogist 81, 1249-1262.

Hayward, C., 2011. High spatial resolution electron probe microanalysis of tephras and melt inclusions without beam-induced chemical modification: The Holocene 22(1), 119-125.

Hughes, E.C., Buse, B., Kearns, S.L., Blundy, J.D., Kilgour, G., and Mader, H.M., 2019. Low analytical totals in EPMA of hydrous silicate glass due to sub-surface charging: Obtaining accurate volatiles by difference: Chemical Geology 505, 48-56.

Humphreys, M.C.S., Kearns, S.L. and Blundy, J.D., 2006. SIMS investigation of electron-beam damage to hydrous, rhyolitic glasses: Implications for melt inclusion analysis: American Mineralogist 91, 667-679.

Jbara, O., Cazaux, J. and Trebbia, P., 1995. Sodium diffusion in glasses during electron irradiation: Journal of Applied Physics 78(2), 868-875.

Lineweaver, J.L., 1963. Oxygen outgassing caused by electron bombardment of glass: Journal of Applied Physics 34(6), 1786-1791.

Morgan VI, G.B. and London, D., 1996. Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses: American Mineralogist 81(9-10), 1176-1185.

Morgan VI, G.B. and London, D., 2005. Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses: American Mineralogist 90, 1131-1138.

Nash, W.P., 1992. Analysis of oxygen with the electron microprobe: Applications to hydrated glass and minerals: American Mineralogist 77(3-4), 453-457.

Nielsen, C.H. and Sigurdsson, H., 1981. Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses: American Mineralogist 66, 547-552.

Spray, J.G. and Rae, D.A., 1995. Quantitative electron-microprobe analysis of alkali silicate glasses: A review and user guide: The Canadian Mineralogist 33, 323-332.

Varshneya, A.K., Cooper, A.R. and Cable, M., 1966. Changes in composition during electron micro-probe analysis of K2O–SrO–SiO2 glass: Journal of Applied Physics 37, 2199.

Vassamillet, L.F. and Caldwell, V.E., 1969. Electron-probe microanalysis of alkali metals in glasses: Journal of Applied Physics 40(4), 1637-1643.

von der Handt, A. and Donovan, J.J., 2017. Improving EPMA analysis of beam-sensitive materials by a combined mapping and time-dependent intensity correction approach: Microscopy & Microanalysis Meeting, St. Louis.

Zhang, X., Yang, S., Zhao, H., Jiang, S., Zhang, R., and Xie, J., 2019. Effect of beam current and diameter on electron probe microanalysis of carbonate minerals: Journal of Earth Science 30(4), 834-842.

Biological Materials

Büttner, S.H., Isemonger, E.W., Isaacs, M., van Niekerk, D., Sipler, R.E., and Dorrington, R.A., 2021. Living phosphatic stromatolites in a low-phosphorus environment: Implications for the use of phosphorus as a proxy for phosphate levels in paleo-systems: Geobiology 19, 35-47.

Duque, L., Guimarães, F., Ribeiro, H., Sousa, R., and Abreu, I., 2013. Elemental characterization of the airborne pollen surface using Electron Probe Microanalysis (EPMA): Atmospheric Environment 75, 296-302.

Smart, K.E., Kilburn, M.R., Salter, C.J., Smith, J.A.C., and Grovenor, C.R.M., 2007. NanoSIMS and EPMA analysis of nickel localisation in leaves of the hyperaccumulator plant Alyssum lesbiacum: International Journal of Mass Spectrometry 260, 107-114.

Bone and Implants

(see also Dental Materials)

Chen, G., Fu, Z., Guo, H., Pradhan, S.K., and Hao, P., 2020. Study of accumulation behaviour of tungsten based composite using electron probe micro analyser for the application in bone tissue engineering: Saudi Journal of Biological Sciences 27, 2936-2941.

Coats, A.M., Zioupos, P. and Aspden, R.M., 2003. Material properties of subchondral bone from patients with osteoporosis or osteoarthritis by microindentation testing and electron probe microanalysis: Calcified Tissue International 73, 66-71.

Cooper, D.M.L., Chapman, L.D., Carter, Y., Wu, Y., Panahifar, A., Britz, H.M., Bewer, B., Zhouping, W., Duke, M.J.M., and Doschak, M., 2012. Three dimensional mapping of strontium in bone by dual energy K-edge subtraction imaging: Physics in Medicine and Biology 57, 5777-5786.

Essani, M., Abellan, P., Weiss, P., Bideau, J.L., Charbonnier, B., and Moussi, H., 2021. The combined use of SEM, EPMA and FIB for the characterization of novel biomaterials for bone regeneration: Microscopy and Microanalysis 27(Supp 1), 430-431.

Hosoya, A., Hoshi, K., Sahara, N., Ninomiya, T., Akahane, S., Kawamoto, T., and Ozawa, H., 2005. Effects of fixation and decalcification on the immunohistochemical localization of bone matrix proteins in fresh-frozen bone sections: Histochemistry and Cell Biology 123, 639-646.

Kitsugi, T., Nakamura, T., Yamamuro, T., Kokubu, T., Shibuya, T., and Takagi, M., 1987. SEM-EPMA observation of three types of apatite-containing glass-ceramics implanted in bone: The variance of a Ca-P-rich layer: Journal of Biomedical Materials Research 21, 1255-1271.

Kitsugi, T., Yamamuro, T. and Nakamura, T., 1989. Bone bonding behavior of MgO-CaO-SiO2-P2O5-CaF5 glass (mother glass of A-W-glass-ceramics): Journal of Biomedical Materials Research 23, 631-648.

Kitsugi, T., Yamamuro, T. and Nakamura, T., Shoichiro, H., Kakutani, Y., Hyakuna, K., Ito, S., Kokubo, T., Masataka, T., and Shibuya, T., 1986. Bone bonding behavior of three kinds of apatite containing glass ceramics: Journal of Biomedical Materials Research 20, 1295-1307.

Kumar, A., Biswas, K. and Basu, B., 2015. Bone bonding behavior of three kinds of apatite containing glass ceramics: Journal of Biomedical Materials Research Part A 103A, 791-806.

Lin, F.-H., Lin, C.-C., Liu, H.-C., Huang, Y.-Y, Wang, C.-Y., and Lu, C.-M., 1994. Sintered porous DP-bioactive glass and hydroxyapatite as bone substitute: Biomaterials 15(13), 1087-1098.

Niedhart, C., Maus, U., Redmann, E., and Siebert, C.H., 2001. In vivo testing of a new in situ setting β-tricalcium phosphate cement for osseous reconstruction: Journal of Biomedical Materials Research 55(4), 530-537.

Oda, Y., Miura, T., Hirano, T., Furuya, Y., Ito, T., Yoshinari, M., and Yajima, Y., 2021. Effects of 2% sodium fluoride solution on the prevention of streptococcal adhesion to titanium and zirconia surfaces: Scientific Reports 11:4498,, 9 pp.

Ohtsu, N., Sato, K., Saito, K., Asami, K., and Hanawa, T., 2007. Calcium phosphates formation on CaTiO3 coated titanium: Journal of Materials Science: Materials in Medicine 18, 1009-1016.

Okumura, M., Ohgushi, H., Tamai, S., and Shors, E.C., 1991. Primary bone formation in porous hydroxyapatite ceramic: A light and scanning electron microscopic study: Cells & Materials 1(1), 29-34.

Panahifar, A., 2014. Novel Imaging Tracers of Bone Turnover for the Early Diagnosis of Osteoarthritis: Ph.D. University of Alberta, 178 pp.

Panahifar, A., Maksymowych, W.P. and Doschak, M.R., 2012. Potential mechanism of alendronate inhibition of osteophyte formation in the ratmodel of post-traumatic osteoarthritis: Evaluation of elemental strontium as a molecular tracer of bone formation: Osteoarthritis and Cartilage 20, 694-702.

Poon, K.K., Schaffoner, S., Einarsrud, M.-A., and Glaum, J., 2021. Barium titanate-based bilayer functional coatings on Ti alloy biomedical implants: Journal of the European Ceramic Society 41, 2918-2922.

Ren, Y., Sun, X., Cui, F., and Kong, X., 2007. Effects of pH and initial Ca2+-H2PO4 concentration on fibroin mineralization: Frontiers of Materials Science in China 1(3), 258-262.

Soicher, M.A., Christiansen, B.A., Stover, S.M., Leach, J.K., Yellowley, C.E., Griffiths, L.G., and Fyhrie, D.P., 2014. Remineralized bone matrix as a scaffold for bone tissue engineering: Journal of Biomedical Materials Research Part A 102A, 4480-4490.

Takiguchi, Y., Kataoka, Y. and Miyazaki, T., 2018. β-tricalcium phosphate/collagen composites improve bone regeneration in rat calvarial bone defects: The Showa University Journal of Medical Sciences 30(4), 449-457.

Wu, Y., Adeeb, S.M., Duke, M.J., Munoz-Paniagua, D., and Doschak, M.R., 2013. Compositional and material properties of rat bone after bisphosphonate and/or strontium ranelate drug treatment: Journal of Pharmaceutical Sciences 16(1), 52-64.

Building Materials

Belleghem, B.V., Zaccardi, Y.V., Van den Heede, P., Tittelboom, K.V., and De Belie, N., 2019. Evaluation and comparison of traditional methods and Electron Probe Micro Analysis (EPMA) to determine the chloride ingress perpendicular to cracks in self-healing concrete: Construction and Building Materials 227, 116789.

Hamuyuni, J. and Taskinen, P., 2016. Experimental phase equilibria of the system Cu–O–CaO–Al2O3 in air: Journal of the European Ceramic Society 36, 847-855.

Ifka, T., Palou, M., Baraček, J., Šoukal, F., and Boháč, M., 2014. Evaluation of P2O5 distribution inside the main clinker minerals by the application of EPMA method: Cement and Concrete Research, 59, 147-154.

Ifka, T., Palou, M.T. and Bazelova, Z., 2012. The influence of CaO and P2O5 of bone ash upon the reactivity and the burnability of cement raw mixtures: Ceramics–Silikáty, 56(1), 76-84.

Inohara, Y., Komori, T., Kyono, K., Shiomi, H., and Kashiwagi, T., 2007. Prevention of COT bottom pitting corrosion by zinc-primer: Shipbuilding Technology ISST, Osaka, 29-31.

Lee, J., Kwon, S.Y. and Jung, I.-H., 2021. Phase diagram study and thermodynamic assessment of the Na2O-ZrO2 system: Journal of the European Ceramic Society, 41, 7946-7956.

Shimauchi, K.-i., Kitamura, S.-y. and Shibata, H., 2009. Distribution of P2O5 between solid dicalcium silicate and liquid phases in CaO–SiO2–Fe2O3 system: Iron and Steel Institute of Japan International , 49(4), 505-511.

Tomoto, T. and Moriyoshi, A., 2008. Decalcification mechanism of concrete by organic matters in atmosphere: Canadian Journal of Civil Engineering 35, 744-750.

Turner, R.J., Bots, P., Richardson, A., Bingham, P.A., Scrimshire, A., Brown, A., S’Ari, M., Harrington, J., Cumberland, S.A., Renshaw, J.C., Baker, M.J., Edwards, P.R., Jenkins, C., and Hamilton, A., 2021. (Hydroxy)apatite on cement: Insights into a new surface treatment: Materials Advances 2, 6356-6368.

Wang, H., Yu, H., Kondo, S., Okubo, N., and Kasada, R., 2020. Corrosion behaviour of Al-added high Mn austenitic steels in molten lead bismuth eutectic with saturated and low oxygen concentrations at 450 ℃: Corrosion Science 175, 108864, 12 pp.

Yuse, F., Matsushita, M. and Izumi, M., 2016. Steel plate for bridges with long-life coating (Eco-View): Kobelco Technology Review 34, 6-11.


Fang, Y. and Xu, H., 2018. Study of an Ordovician carbonate with alternating dolomite-calcite laminations and its implication for catalytic effects of microbes on the formation of sedimentary dolomite: Journal of Sedementary Petrology 88, 679-695.

Jarosewich, E. and MacIntyre, I.G., 1983. Carbonate reference samples for electron microprobe and scanning electron microscope analyses: Journal of Sedementary Petrology 53(2), 677-678.

Lane, S.J. and Dalton, J.A., 1994. Electron microprobe analysis of geological carbonates: American Mineralogist 79, 745-749.

Ramírez-García, M.P., 2018. The Kinetics of Calcium Carbonate, Nucleation and Growth: PhD Thesis The University of Leeds, 186 pp.

Rodríguez, M., De Baere, B., François, R., Hong, Y., Yasuhara, M., and Not, C., 2021. An evaluation of cleaning methods, preservation and specimen stages on trace elements in modern shallow marine ostracod shells of Sinocytheridea impressa and their implications as proxies: Chemical Geology 579,, 15 pp.

Dental Identification

Ishikawa, N., Miake, Y., Kitamura, K., and Yamamoto, H., 2019. A new method for estimating time since death by analysis of substances deposited on the surface of dental enamel in a body immersed in seawater: International Journal of Legal Medicine 133, 1421-1427.

Moody, G.H., Busuttil, A. and Hill, P.G., 1992. A common origin for dental porcelain derived from an accused’s hand and the deceased victim of an assault : International Journal of Legal Medicine 105, 179-183.

Suzuki, K., Hanaoka, Y., Minaguchi, K., Inoue, M., and Suzuki, H., 1991. Positive identification of dental porcelain in case of murder: Japanese Journal of Legal Medicine 45(4), 330-340.

Dental Materials

(see also Bone and Implants)

Chiba, T., Asada, Y., Ishikawa, M., Yamamoto, T., Shimoda, S., and Momoi, Y., 2016. Remineralization effects of calcium phosphate based paste for tooth enamel: The Japanese Conservative Journal of Dentistry 59(1), 59-64.

Cochrane, N.J., Iijima, Y., Shen, P., Yuan, Y., Walker, G.D., Reynolds, C., MacRae, C.M., Wilson, N.C., Adams, G.G., and Reynolds, E.C., 2014. Comparative study of the measurement of enamel demineralization and remineralization using transverse microradiography and electron probe microanalysis: Microscopy and Microanalysis 20, 937-945.

Fujikawa, K., Sugawara, A., Kusama, K., Nishiyama, M., Murai, S., Takagi, S., 2002. Fluorescent labeling analysis and electron probe microanalysis for alveolar ridge augmentation using calcium phosphate cement: Dental Materials Journal 21(4), 296-305.

Fukushima, T. and Horibe, T., 1991. Line analysis of interface layer on dentin by means of electron-probe microanalysis: Journal of Biomedical Materials Research 25, 129-140.

Funayama, A., Mikami, T., Niimi, K., Kano, H., Nikkuni, Y., Yamazaki, M., and Kobayashi, T., 2016. Electron probe microanalysis of exogenous pigmentation of oral mucosa originating from dental alloy: Two case reports: Open Journal of Stomatology 6, 120-126.

Furusawa, T., Mizunuma, K., Yamashita, S., and Takahashi, T., 1998. Investigation of early bone formation using resorbable bioactive glass in the rat mandible: International Journal Oral Maxillofac Implants 13, 672-676.

Jung, H.-J., Yim, S.-B., Chung, C.-H., and Hong, K.-S., 2008. EPMA analysis of bone formation around RBM surface implant: The Journal of the Korean Academy of Periodontology 38, 503-510.

Knight, G.M., McIntyre, J.M., Craig, G.G., and Mulyani, 2007. Electron probe microanalysis of ion exchange of selected elements between dentine and adhesive restorative materials: Australian Dental Journal 52(2), 128-132.

Miyake, M., Ishii, T., Andoh, M., Takayama, Y., Tohyama, Y., Hori, M., Fujisaki, T., Asahina, H., Tanaka, H., and Sato, H., 1987. Submandibular gland sialolithiasis–sialographic and pathologic findings with evaluation using SEM and EPMA analysis: The Journal of Nihon University School of Dentistry 29, 112-123.

Suzuki, H., Amizuka, N., Oda, K., Noda, M., Ohshima, H., and Maeda, T., 2008. Involvement of the klotho protein in dentin formation and mineralization: The Anatomical Record 291, 183-190.

Umehara, H., Doi, K., Oki, Y., Kobatake, R., Makihara, Y., Kubo, T., and Tsuga, K., 2020. Development of a novel bioactive titanium membrane with alkali treatment for bone regeneration: Dental Materials Journal 39(5), 877-882.

Yoon, H.-J., Yoon, J.-H., Park, S.-H., Lee, M.-H., Han, J.-S., and Kim, D.-J., 2015. The role of MgAl2O4 powder packing on phase stability of hydroxyapatite during sintering: Journal of the American Ceramic Society 98(6), 1787-1793.

Detection Limit and Trace-Element Analysis

Allaz, J., Jercinovic, M.J., Williams, M.L., and Donovan, J.J., 2014. Trace element analyses by EMP: Pb-in-monazite and new multipoint background: Microscopy and Microanalysis 20(Suppl 3), 720-721.

Batanova, V.G., Sobolev, A.V. and Magnin, V., 2018. Trace element analysis by EPMA in geosciences: Detection limit, precision and accuracy: IOP Conference Series: Materials Science and Engineering 304, doi:10.1088/1757-899X/304/1/012001.

Donovan, J.J., Lowers, H.A. and Rusk, B.G., 2011. Improved electron probe microanalysis of trace elements in quartz: American Mineralogist 96, 274-282.

Donovan, J.J., Singer, J.W. and Armstrong, J.T., 2016. A new EPMA method for fast trace element analysis in simple matrices: American Mineralogist 101(8), 1839-1853.

Fialin, M., Rémy, H., Richard, C., and Wagner, C., 1999. Trace element analysis with the electron microprobe: New data and perspectives: American Mineralogist 84, 70-77.

Jercinovic, M.J. and Williams, M.L., 2012. Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: Background acquisition, interferences, and beam irradiation effects: American Mineralogist 90, 526-546.

Jercinovic, M.J., Williams, M.L., Allaz, J., and Donovan, J.J., 2012. Trace analysis in EPMA: IOP Conference Series: Materials Science and Engineering 32, 012012

Korolyuk, V.N. and Pokhilenko, L.N., 2014. Electron probe determination of trace elements in olivine: X-Ray Spectrometry 43, 353-358.

Merlet, C. and Bodinier, J.-L., 1990. Electron microprobe determination of minor and trace transition elements in silicate minerals: A method and its application to mineral zoning in the peridotite nodule PHN 1611: Chemical Geology 83, 55-69.

Ritchie, N.W.M., Newbury, D.E. and Leigh, S., 2012. Breaking the 1% accuracy barrier in EPMA: Microscopy and Microanalysis 18 (Suppl 2), Extended Abstract, 2pp.

Romanenko, I.M., Viryus, A.A., Churin, V.A., Deyanov, A.S., and Isanov, A.S., 2012. Estimation of detection limits in electron probe X-Ray microanalysis: Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques 6(4), 616-622.

Sato, A., Mori, N., Takakura, M., and Notoya, S., 2007. Examination of analytical conditions for trace elements based on the detection limit of EPMA (WDS): JEOL News 42E(1), 46-52.

Weiss, Y., Griffin, W.L., Elhlou, S., and Navon, O., 2008. Comparison between LA-ICP-MS and EPMA analysis of trace elements in diamonds: Chemical Geology 252, 158-168.

Ziebold, T.O., 1967. Precision and sensitivity in electron microprobe analysis: Analytical Chemistry 39, 858-861.


Miyagawa, A., Oshiyama, K., Nagatomo, S., and Nakatani, K., 2022. Zeptomole detection of DNA based on microparticle dissociation from a glass plate in a combined acoustic-gravitational field: Talanta 238,, 7 pp.

Doped Ceramics

(see also Superconductors)

Böttcher, R., Langhammer, H.T., Walther, T., Syrowatka, C., and Ebbinghaus, S.G., 2019. Defect properties of vanadium doped barium titanate ceramics: Materials Research Express 6(11), 115210.

Samardzija, Z., Makovec, D. and Ceh, M., 2000. EPMA and microstructural characterization of Yttrium doped BaTiO3 ceramics: Mikrochimica Acta 132, 383-386.


Kaplan, M.L., 1991. Solvent penetration in cured epoxy networks: Polymer Engineering and Science 31(10), 689-698.

Fingerprint Analysis

Challinger, S.E., Baikie, I.D., Flannigan, G., Halls, S., Laing, K., Daly, L., and Daeid, N.N., , 2018. Comparison of scanning Kelvin probe with SEM/EPMA techniques for fingermark recovery from metallic surfaces: Forensic Science International 291, 44-52.


(see also Bone and Implants)

Kim, J.-K., Kwon, Y.-E., Lee, S.-G., Kim, C.-Y., Kim, J.-G., Huh, M., Lee, E., and Kim, Y.-J., 2017. Correlative microscopy of the constituents of a dinosaur rib fossil and hosting mudstone: Implications on diagenesis and fossil preservation: PLoS ONE 12(10):e0186600, 25 pp.

Kim, J.-K., Kwon, Y.-E., Lee, S.-G., Lee, J.-H., Kim, J.-H., Huh, M., Lee, E., and Kim, Y.-J., 2017. Disparities in correlating microstructural to nanostructural preservation of dinosaur femoral bones: Scientific Reports 7:45562, doi:10:1038/srep45562, 12 pp.

Margariti, E., Stathopoulou, E.T., Sanakis, Y., Kotopoulou, E., Pavlakis, P., and Godelitsas, A., 2019. A geochemical approach to fossilization processes in Miocene vertebrate bones from Sahabi, NE Libya: Journal of African Earth Science 149, 1-18.

Gems and Gemology

Belley, P.M. and Palke, A.C., 2021. Purple gem spinel from Vietnam and Afghanistan: Comparison of trace element chemistry, cause of color, and inclusions: Gems and Gemology 57(3), 228-238

Jena, P.R. and Mishra, P.K., 2017. , Raman, EPMA and X-ray tomographic study of the Odisha’s beryl (emerald) sample: Journal of Geology & Geophysics 6(3), DOI: 10.4172/2381-8719.1000288.

Liu, L., Yang, M. and Li, Y., 2020. Unique raindrop pattern of turquoise from Hubei, China: Gems and Gemology 56(3), 380-400.

McClure, S.F., Smith, C.P., Wang, W., and Hall, M., 2006. Identification and durability of lead glass-filled rubies: Gems and Gemology 42(1), 22-34.

Monarumit, N., Boonmee, C., Ingavanija, S., Lhuaamporn, T., Wathanakul, P., and Satitkune, S., 2017. Internal features of glass filled ruby samples probed by EPMA: Key Engineering Materials 744, 409-413.

Monarumit, N., Satitkune, S. and Wongkokua, W., 2017. Role of ilmenite micro-inclusion on Fe oxidation states of natural sapphires: Journal of Physics: Conference Series 901, 012074.

Palke, A.C. and Breeding, C.M., 2017. The origin of needle-like rutile inclusions in natural gem corundum: A combined EPMA, LA-ICP-MS, and nanoSIMS investigation: Gems and Gemology 56(3), 380-400.

Sahoo, R.K., Singh, S.K. and Misha, B.K., 2016. Surface and bulk 3D analysis of natural and processed ruby using electron probe micro analyzer and X-ray micro CT scan: Journal of Electron Spectroscopy and Related Phenomena 211, 55-63.

Sun, Z., Palke, A.C., Breeding, C.M. and Ditrow, B.L., 2019. A new method for determining gem tourmaline species by LA-ICP-MS, and nanoSIMS investigation:American Mineralogist 102(7), 1451-1461.

Vu, D.T.A., Salam, A., Fanka, A., Belousova, E., and Sutthirat, C., 2020. Mineral inclusions in sapphire from basalatic terranes in southern Vietnam: Indicator of formation model: Gems and Gemology 56(4), 498-515.

Glass Identification

(see also Ancient Glasses and Glass Beads)

Falcone, R., Sommariva, G. and Verità, M., 2006. WDXRF, EPMA and SEM/EDX quantitative chemical analyses of small glass samples: Microchimica Acta 155, 137-140.


(see also Ancient Glasses and Glass Beads)
(see also Glass Identification)

Lucas, P., Cui, S., Bayko, D.P., Gulbiten, O., Coleman, G.J., and Troles, J., 2020. Homogeneity of melt-rocked Ge–Se glasses and the effect of impurities: International Journal of Applied Glass Science 12, 391-397.

Wereszczak, A.A. and Anderson Jr., C.E., 2014. Borofloat and starphire float glasses: A comparison: International Journal of Applied Glass Science 5(4), 334-344.


Abduriyim, A., Saruwatari, K. and Katsurada, Y., 2017. Japanese jadeite: History, characteristics, and comparison with other sources: Gems and Gemology 53(1), 48-67.

Hirajima, T., 2017. Jadeite and jadeitite-bearing rock in the Sanbagawa and the Kamuikotan belts, Japan: A review: Journal of Mineralogical and Petrological Sciences 112, 237-246.

Hung, H.-C., Iizuka, Y., Bellwood, P., Nguyen, K.D., Bellina, B., Silapanth, P., Dizon, E., Santiago, R., Datan, I., and Manton, H., 2007. Ancient jades map 3,000 years of prehistoric exchange in Southeast Asia: Proceedings of the National Academy of Sciences 104(50), 19745-19750.

Lin, C., He, X., Lu, Z., and Yao, Y, 2020. Phase composition and genesis of pyroxenic jadeite from Guatemala: Insights from cathodoluminescence: Royal Society of Chemistry 10, 15937-15946.

Light-Element Analysis

Bastin, G.F. and Heijligers, H.J.M., 1992. Present and future of light element analysis with electron beam instruments: Microbeam Analysis 1, 61-73.

Fialin, M. and Remond, G., 1993. Electron probe microanalysis of oxygen in strongly insulating oxides: Microbeam Analysis 2, 179-189.

McGuire, A.V., Francis, C.A. and Dyar, M.D., 1992. Mineral standards for electron microprobe analysis of oxygen: American Mineralogist 77, 1087-1091.

Meier, D., Davis, J.M. and Vicenzi, E.P., 2011. An Examination of Kernite (Na2B4O6(OH)2•3H2O) using X-ray and electron spectroscopies: Quantitative microanalysis of a hydrated low-Z mineral: Microscopy Microanalysis 17, 718-727.

Osan, J., Szaloki, I., Ro, C.-U., and Grieken, R.V., 2000. Light element analysis of individual microparticles using thin-window EPMA: Microchimica Acta 132, 349-355.

Raudsepp, M., 1995. Recent advances in the electron-probe micro-analysis of minerals for the light elements: Canadian Mineralogist 33, 203-218.

Rigby, M., Droop, G., Plant, D., and Gräser, P., 2008. Electron probe micro-analysis of oxygen in cordierite: Potential implications for the analysis of volatiles in minerals : South African Journal of Geology 111, 239-250.

von der Handt, A. and Mosenfelder, J., 2021. B, C, N and O analysis by EPMA-SXES: Microscopy and Microanalysis 27(Suppl 1), 3332-3335.


Donovan, J.J., Allaz, J.M., von der Handt, A., Seward, G.G.E., Neill, O., Goemann, K., Chouinard, J., and Carpenter, P.K., 2021. Quantitative WDS compositional mapping using the electron microprobe: American Mineralogist 106, 1717-1735.

Meteorites and Asteroid-Impact Studies

Afiattalab, F. and Wasson, J.T., 1980. Composition of the metal phases in ordinary chondrites: Implications regarding classification and metamorphism : Geochimica et Cosmochimica Acta 44, 431-446.

Baecker, B., Rubin, A.E. and Wasson, J.T., 2017. Secondary melting events in Semarkona chondrules revealed by compositional zoning in low-Ca pyroxene: Geochimica et Cosmochimica Acta 211, 256-279.

Bishop, H.E., 1999. Origin of planetary cores: Evidence from highly siderophile elements in martian meteorites: Geochimica et Cosmochimica Acta 63, 2105-2122.

Breen, J.P., Rubin, A.E. and Wasson, J.T., 2016. Variations in impact effects among IIIE iron meteorites: Meteoritics and Planetary Science 51, 1611-1631.

Chizmadia, L., Rubin, A.E. and Wasson, J.T., 2002. Mineralogy and petrology of amoeboid olivine inclusions: Evidence for CO3 parent-body aqueous alteration: Meteoritics and Planetary Science 37, 1781-1796.

Choe, W.H., Huber, H., Rubin, A.E., Kallemeyn, G.W. and Wasson, J.T., 2010. Compositions and taxonomy of 15 unusual carbonaceous chondrites: Meteoritics and Planetary Science 45, 531-554.

de Leuw, S., Rubin, A.E., Schmitt, A.K., and Wasson, J.T., 2009. 53Mn-53Cr systematics of carbonates in CM chondrites: Implications for the timing and duration of aqueous alteration: Geochimica et Cosmochimica Acta 73, 7433-7442.

de Leuw, S., Rubin, A.E. and Wasson, J.T., 2010. Carbonates in CM chondrites: Complex formational histories and comparison to carbonates in CI chondrites: Meteoritics and Planetary Science 45, 513-530.

Dyl, K.A., Simon, J.I. and Young, E.D., 2011. Valence state of titanium in the Wark–Lovering rim of a Leoville CAI as a record of progressive oxidation in the early Solar Nebula: Geochimica et Cosmochimica Acta 75, 937-949.

Friedrich, J.M., Rubin, A.E., Beard, S.P., Swindle, T.D., Isachsen, C.E., Rivers, M.L., and Macke, R.J., 2014. Ancient porosity preserved in ordinary chondrites: Shock, compaction and thermal metamorphism: Meteoritics and Planetary Science 49, 1214-1231.

Greenwood, J.P., Rubin, A.E. and Wasson, J.T., 2000. Oxygen-isotopes in R-chondrite magnetite and olivine: Links between R chondrites and ordinary chondrites: Geochimica et Cosmochimica Acta 64, 3897-3911.

Grossman, J.N., Rubin, A.E. and MacPherson, G.J., 1988. : A unique volatile-poor carbonaceous chondrite with implications for nebular fractionation processes: Earth and Planetary Science Letters 91, 33-54.

Grossman, J.N., Rubin, A.E., Rambaldi, E.R., Rajan, R.S., and Wasson, J.T., 1985. Chrondrules in the Qingzhen type-3 enstatite chondrite: Possible precursor components and comparison to ordinary chondrite chondrules: Geochimica et Cosmochimica Acta 49, 1781-1795.

Harju, E.R., Rubin, A.E., Choi, B.-G., Ahn, I., Ziegler, K. and Wasson, J.T., 2014. Progressive aqueous alteration of CR carbonaceous chondrites: Geochimica et Cosmochimica Acta 139, 267-292.

Hassanzadeh, J., Rubin, A.E. and Wasson, J.T., 1990. Compositions of large metal nodules in mesosiderites: Links to iron meteorite group IIIAB and the origin of mesosiderite subgroups: Geochimica et Cosmochimica Acta 54, 3197-3208.

Huber, H., Rubin, A.E., Kallemeyn, G.W., and Wasson, J.T. , 2006. Siderophile-element anomalies in CK carbonaceous chondrites: Implications for parent-body aqueous alteration and terrestrial weathering of sulfides: Geochimica et Cosmochimica Acta 70, 4019-4037.

Hurt, S.M., Rubin, A.E. and Wasson, J.T. , 2012. Fractionated matrix composition in CV3 Vigarano and alteration processes on the CV parent asteroid: Meteoritics and Planetary Science 47, 1035-1048.

Isa, J., Ma, C. and Rubin, A.E., 2016. : A new sulfide mineral (MnCr2S4) from the IVA iron meteorite, Social Circle: American Mineralogist 101, 1217-1221.

Isa, J., Rubin, A.E. and Wasson, J.T., 2014. R-chondrite bulk-chemical compositions and diverse oxides: Implications for parent-body processes: Geochimica et Cosmochimica Acta 124, 131-151.

Jenniskens, P., Rubin, A.E., Yin, Q.-Z., Sears, D.W.G., Sandford, S.A., Zolensky, M.E., Krot, A.N., Blair, L., Kane, D., Utas, J., Verish, R., Friedrich, J.M., Wimpenny, J., Eppich, G.R., Ziegler, K., Verosub, K.L., Rowland, D.J., Albers, J., Gural, P.S., Grigsby, B., Fries, M.D., Matson, R., Johnston, M., Silber, E., Brown, P., Yamakawa, A., Sanborn, M.E., Laubensten, M., Welten, K.C., Nishiizumi, K., Meier, M.M.M., Busemann, H., Clay, P., Caffee, M.W., Schmitt-Kopplin, P., Hertkorn, N., Glavin, D.P., Callahan, M.P., Dworkin, J.P., Wu, Q., Zare, R.N., Grady, M., Verchovsky, S., Emel’yanenko, V., Naroenkov, S., Clark, D., Girten, B., and Worden, P.S., 2014. Fall, recovery and characterization of the Novato L6 chondrite breccia: Meteoritics and Planetary Science 49, 1388-1425.

Kallemeyn, G.W. and Rubin, A.E., 1995. Coolidge and Loongana 001: Members of a new carbonaceous chondrite grouplet: Meteoritics 30, 20-27.

Kallemeyn, G.W., Rubin, A.E., Wang, D., and Wasson, J.T. , 1989. Ordinary chondrites: Bulk compositions, classification, lithophile-element fractionations and composition-petrographic type relationships: Geochimica et Cosmochimica Acta 53, 2747-2767.

Kallemeyn, G.W., Rubin, A.E. and Wasson, J.T. , 1991. The compositional classification of chondrites: V. The Karoonda (CK) group of carbonaceous : Geochimica et Cosmochimica Acta 55, 881-892.

Kallemeyn, G.W., Rubin, A.E. and Wasson, J.T. , 1994. The compositional classification of chondrites: VI. The CR carbonaceous chondrite group: Geochimica et Cosmochimica Acta 58, 2873-2888.

Kallemeyn, G.W., Rubin, A.E. and Wasson, J.T. , 1996. The compositional classification of chondrites: VII. The R chondrite group: Geochimica et Cosmochimica Acta 60, 2243-2256.

Krot, A.N. and Rubin, A.E., 1994. Glass-rich chondrules in ordinary chondrites: Meteoritics 29, 697-706.

Krot, A.N. and Rubin, A.E., 1996. Microchondrule-bearing chondrule rims: Constraints on chondrule formation: In Chondrules and the Protoplanetary Disk, Hewins, R.H., Jones, R.H. and Scott, E.R.D. (Ed.), Cambridge University Press, 181-184.

Krot, A.N., Rubin, A.E., Keil, K., and Wasson, J.T., 1997. Microchondrules in ordinary chondrites: Implications for chondrule formation: Geochimica et Cosmochimica Acta 61, 463-473., 181-184.

Krot, A.N., Rubin, A.E. and Kononkova, N.N. , 1993. First occurrence of pyrophanite (MnTiO3) and baddeleyite (ZrO2) in an ordinary chondrite: Meteoritics 28, 232-239.

Kunihiro, T., Rubin, A.E., McKeegan, K.D., and Wasson, J.T., 2004. Oxygen-isotopic compositions of relict and host grains in chondrules in the Yamato 81020 CO3.0 chondrite: Geochimica et Cosmochimica Acta 68, 3599-3606.

Kunihiro, T., Rubin, A.E. and Wasson, J.T., 2005. Oxygen-isotopic compositions of low-FeO relicts in high-FeO host chondrules in Acfer 094, a type-3.0 carbonaceous chondrite closely related to CM: Geochimica et Cosmochimica Acta 69, 3831-3840.

Kyte, F.T., 2002. Composition of impact melt debris from the Eltanin impact strewn field, Bellingshausen Sea: Deep Sea Research Part II: Topical Studies in Oceanography 49(6), 1029-1047.

Kyte, F.T., 1998. A meteorite from the Cretaceous/Tertiary boundary: Nature 396, 237-239.

Kyte, F.T., 2002. Composition of Impact Melt Debris from the Eltanin Impact Strewn Field, Bellingshausen Sea: Deep Sea Research II 49, 1029-1047.

Kyte, F.T., 2002. Meteoritic Debris Collected from Eltanin Ejecta in Polarstern Cores from Expedition ANT XII/4: Deep Sea Research II 49, 1063-1071.

Kyte, F.T., 2002. Tracers of the extraterrestrial component in sediments and inferences on Earth’s accretion history: Proceedings of the Conference on Catastrophic Events and Mass Extinctions: Impacts and Beyond, Koeberl, C. and MacLoed, K.G. (Ed.), Geological Society of America, Special Paper 356, 21-38.

Kyte, F.T. and Bohor, B.H., 1995. Nickel-rich magnesiowüstite in Cretaceous/Tertiary boundary spherules crystallized from ultramafic, refractory silicate liquids: Geochimica et Cosmochimica Acta 59(23), 4967-4974.

Kyte, F.T. and Bostwick, J.A., 1995. Magnesioferrite spinel in Cretaceous-Tertiary boundary sediments of the Pacific basin: Hot, early condensates of the Chicxulub impact?: Earth and Planetary Science Letters 132, 113-127.

Kyte, F.T., Bostwick, J.A. and Zhou, L., 1995. Identification of the Cretaceous-Tertiary boundary at ODP Site 886, ODP Site 803, and DSDP Site 576: Proceedings of the Ocean Drilling Program, Scientific Results 145, 427-434.

Kyte, F.T., Bostwick, J.A. and Zhou, L., 1996. The Cretaceous-Tertiary boundary on the Pacific plate: Composition and distribution of impact debris: In The Cretaceous-Tertiary Event and Other Catastrophes in Earth History Geological Society of America Special Paper 307, 389-401.

Kyte, F.T. and Brownlee, F.T., 1985. Unmelted meteoritic debris in the Late Pliocene iridium anomaly: Evidence for the impact of a nonchondritic asteroid: Geochimica et Cosmochimica Acta 49(5), 1095-1108.

Kyte, F.T., Shukolyukov, A., Hildebrand, A.R., Lugmair, G.W., and Hanovac, J., 2011. Chromium-isotopes in Late Eocene impact spherules indicate a likely asteroid belt provenance: Earth and Planetary Science Letters 302(3-4), 279-286.

Kyte, F.T. and Smit, J., 1986. Regional variations in spinel compositions: An important key to the Cretaceous-Tertiary event: Geology 14(6), 485-487.

Lee, M.S., Rubin, A.E. and Wasson, J.T., 1992. Origin of metallic Fe-Ni in Renazzo and related chondrites: Geochimica et Cosmochimica Acta 56, 2521-2533.

Leshin, L.A., Rubin, A.E. and McKeegan, K.D., 1997. The oxygen isotopic composition of olivine and pyroxene from CI chondrites: Geochimica et Cosmochimica Acta 61, 835-845.

Li, Y., Rubin, A.E. and Hsu, W., 2021. Formation of metallic-Cu-bearing mineral assemblages in type-3 ordinary and CO chondrites: American Mineralogist 106, 1751-1767.

Li, Y., Rubin, A.E., Hsu, W., and Ziegler, K., 2020. Early impact events on chondritic parent bodies: Insights from petrography and geochemistry of the ll7 breccia NWA 11004: Journal of Geophysical Research–Planets 125,

Llorca, J., Trigo-Rodriquez, J.M., Ortiz, J.L., Docobo, J.A., Garcia-Guinea, J., Castro-Tirado, A.J., Rubin, A.E., Eugster, O., Edwards, W., Laubenstein, M., Casanova, I., 2005. The Villalbeto de la Peña meteorite fall: I. Fireball energy, meteorite recovery, strewn field and petrography: Meteoritics and Planetary Science 40, 795-804.

Ma, C. and Rubin, A.E., 2019. Edscottite, Fe5C2, a new iron carbide mineral from the Ni-rich Wedderburn IAB iron meteorite: American Mineralogist 104, 1351-1355.

Margolis, S.V., Claeys, P. and Kyte, F.T., 1991. Microtektites, microkrystites, and spinels from a Late Pliocene asteroid impact in the Southern Ocean: Science 251(5001), 1594-1597.

Mittlefehldt, D.W., Rubin, A.E. and Davis, A.M., 1992. Mesosiderite clasts with the most extreme positive Eu anomalies among solar system rocks: Science 257, 1096-1099.

Nakamura-Messenger, K., Clemett, S.J., Rubin, A.E., Choe, B.-G., Zhang, S., Rahman, Z., Oikawa, K., and Keller, L.P., 2012. Wassonite: A new titanium monosulfide mineral in the Yamato 691 enstatite chondrite: American Mineralogist 97, 807-815.

Rubin, A.E., 1984. Manganiferous orthopyroxene and olivine in the Allende meteorite: American Mineralogist 69, 880-888.

Rubin, A.E., 1984. Coarse-grained chondrule rims in type 3 chondrites: Geochimica et Cosmochimica Acta 48, 1779-1789.

Rubin, A.E., 1986. Elemental compositions of major silicic phases in chondrules of unequilibrated chondritic meteorites: Meteoritics 21, 283-293.

Rubin, A.E., 1989. An olivine-microchondrule-bearing clast in the Krymka meteorite: Meteoritics 24, 191-192.

Rubin, A.E., 1990. and olivine in ordinary chondrites: Intergroup and intragroup relationships: Geochimica et Cosmochimica Acta 54, 1217-1232.

Rubin, A.E., 1991. Euhedral awaruite in the Allende CV3 meteorite: Implications for the origin of awaruite- and magnetite-bearing nodules in CV3 chondrites: American Mineralogist 76, 1356-1362.

Rubin, A.E., 1992. Barred olivine chondrule in the Allende meteorite: Journal of the Royal Astronomical Society of Canada 86, 1-4.

Rubin, A.E., 1992. A shock-metamorphic model for silicate darkening and compositionally variable plagioclase in CK and ordinary chondrites: Geochimica et Cosmochimica Acta 56, 1705-1714.

Rubin, A.E., 1993. Magnetite-sulfide chondrules and nodules in CK carbonaceous chondrites: Implications for the timing of CK oxidation: Meteoritics 28, 130-135.

Rubin, A.E., 1994. Metallic copper in ordinary chondrites:Meteoritics 29, 93-98.

Rubin, A.E., 1994. Euhedral tetrataenite in the Jelica meteorite:Mineralogical Magazine 58, 215-221.

Rubin, A.E., 1995. Fractionation of refractory siderophile elements in metal from the Rose City meteorite: Meteoritics 30, 412-417.

Rubin, A.E., 1997. The Hadley Rille enstatite chondrite and its agglutinate-like rim: Impact melting during accretion to the Moon: Meteoritics and Planetary Science 32, 135-141.

Rubin, A.E., 1997. Igneous graphite in chondritic meteorites: Mineralogical Magazine 61, 699-703.

Rubin, A.E., 1997. The Galim LL/EH polymict breccia: Evidence for impact-induced exchange between reduced and oxidized meteoritic material: Meteoritics and Planetary Science 32, 489-492.

Rubin, A.E., 1997. Sinoite (Si2N2O): Crystallization from EL chondrite impact melts: American Mineralogist 82, 1001-1006.

Rubin, A.E., 1998. Correlated petrologic and geochemical characteristics of CO3 chondrites: Meteoritics and Planetary Science 33, 385-391.

Rubin, A.E., 1999. Formation of large metal nodules in ordinary chondrites: Journal of Geophysical Research — Planets 104, 30,799-30,804.

Rubin, A.E., 2002. The Smyer H-chondrite impact-melt breccia and evidence for sulfur vaporization: Geochimica et Cosmochimica Acta 66, 683-695.

Rubin, A.E., 2002. Post-shock annealing of Miller Range 99301 (LL6): Implications for impact heating of ordinary chondrites: Geochimica et Cosmochimica Acta 66, 3327-3337.

Rubin, A.E., 2003. Chromite-plagioclase assemblages as a new shock indicator; Implications for the shock and thermal histories of ordinary chondrites: Geochimica et Cosmochimica Acta 67, 2695-2709.

Rubin, A.E., 2003. Northwest Africa 428: Impact-induced annealing of an L6 chondrite breccia: Meteoritics and Planetary Science 38, 1499-1506.

Rubin, A.E., 2004. Post-shock annealing and post-annealing shock in equilibrated ordinary chondrites: Implications for the thermal and shock histories of chondritic asteroids: Geochimica et Cosmochimica Acta 68, 673-689.

Rubin, A.E., 2004. Aluminian low-Ca pyroxene in a Ca-Al-rich chondrule from the Semarkona meteorite: American Mineralogist 89, 867-872.

Rubin, A.E., 2005. Relationships among intrinsic properties of ordinary chondrites: Oxidation state, bulk chemistry, oxygen-isotopic composition, petrologic type and chondrule size: Geochimica et Cosmochimica Acta 69, 4907-4918.

Rubin, A.E., 2006. Shock, post-shock annealing and post-annealing shock in ureilites: Meteoritics and Planetary Science 41, 125-133.

Rubin, A.E., 2006. A relict-grain-bearing porphyritic olivine compound chondrule from LL3.0 Semarkona that experienced limited remelting: Meteoritics and Planetary Science 41, 1027-1038.

Rubin, A.E., 2007. Petrogenesis of acapulcoites and lodranites: A shock-melting model: Geochimica et Cosmochimica Acta 71, 2383-2401.

Rubin, A.E., 2007. Petrography of refractory inclusions in CM2.6 QUE 97990 and the origin of melilite-free spinel inclusions in CM chondrites: Meteoritics and Planetary Science 42, 1711-1726.

Rubin, A.E., 2010. Impact melting in the Cumberland Falls and Mayo Belwa aubrites: Meteoritics and Planetary Science 45, 265-275.

Rubin, A.E., 2010. Physical properties of chondrules in different chondrite groups: Implications for multiple melting events in dusty environments: Geochimica et Cosmochimica Acta 74, 4807-4828.

Rubin, A.E., 2012. Collisional facilitation of aqueous alteration of CM and CV carbonaceous chondrites: Geochimica et Cosmochimica Acta 90, 181-194.

Rubin, A.E., 2012. A new model for the origin of Type-B and Fluffy Type-A CAIs: Analogies to remelted compound chondrules: Meteoritics and Planetary Science 47, 1062-1074.

Rubin, A.E., 2013. An amoeboid olivine inclusion (AOI) in CK3 NWA 1559, comparison to AOIs in CV3 Allende, and the origin of AOIs in CK and CV chondrites: Meteoritics and Planetary Science 48, 432-441.

Rubin, A.E., 2013. Multiple melting in a four-layered barred-olivine chondrule with compositionally heterogeneous glass from LL3.0 Semarkona: Meteoritics and Planetary Science 48, 445-456.

Rubin, A.E., 2014. Shock and annealing in the amphibole- and mica-bearing R chondrites: Meteoritics and Planetary Science 49, 1057-1075.

Rubin, A.E., 2015. Shock and annealing in aubrites: Implications for parent-body history: Meteoritics and Planetary Science 50, 1217-1227.

Rubin, A.E., 2015. An American on Paris: Extent of aqueous alteration of a CM chondrite and the petrography of its refractory and amoeboid olivine inclusions: Meteoritics and Planetary Science 50, 1595-1612.

Rubin, A.E., 2016. Impact melting of the largest known enstatite meteorite: Al Haggounia 001, a fossil EL chondrite: Meteoritics and Planetary Science 51, 1576-1587.

Rubin, A.E., Benoit, P., Reed, B., Eugster, O., and Polnau, E., 1996. The Richfield LL3 chondrite: Meteoritics and Planetary Science 31, 925-927.

Rubin, A.E. and Bottke, W.F., 2009. On the origin of shocked and unshocked CM clasts in H-chondrite regolith breccias: Meteoritics and Planetary Science 44, 701-724.

Rubin, A.E., Breen, J.P., Isa, J., and Tutorow, S., 2017. NWA 10214 – An LL3 chondrite breccia with an assortment of metamorphosed, shocked, and unique chondrite clasts: Meteoritics and Planetary Science 52, 372-390.

Rubin, A.E., Breen, J.P., Wasson, J.T., and Pitt, D., 2015. Shock effects in the Willamette iron meteorite: Meteoritics and Planetary Science 50, 1984-1994.

Rubin, A.E., Griset, C.D., Choi, B.-G., and Wasson, J.T., 2009. Clastic matrix in EH3 chondrites: Meteoritics and Planetary Science 44, 589-601.

Rubin, A.E. and Grossman, J.N., 1985. Phosphate-sulfide assemblages and Al/Ca ratios in type 3 chondrites: Meteoritics 20, 479-489.

Rubin, A.E., James, J.A., Keck, B.D., Weeks, K.S., Sears, D.W.G., and Jarosewich, E., 1985. The Colony meteorite and variations in CO3 chondrite properties: Meteoritics 20, 175-196.

Rubin, A.E. and Jerde, E., 1987. Diverse eucritic pebbles in the Vaca Muerta mesosiderite: Earth and Planetary Science Letters 84, 1-14.

Rubin, A.E. and Jerde, E., 1988. Compositional differences between basaltic and gabbroic clasts in mesosiderites: Earth and Planetary Science Letters 87, 485-490.

Rubin, A.E., Jerde, E., Zong, P., Wasson, J.T., Westcott, J.W., Mayeda, T.K., and Clayton, R.N., 1986. Properties of the Guin ungrouped iron meteorite: The origin of Guin and of group-IIE irons: Earth and Planetary Science Letters 76, 209-226.

Rubin, A.E. and Jones, R.H.., 2003. CSpade: An H-chondrite impact-melt breccia that experienced post-shock annealing: Meteoritics and Planetary Science 38, 1507-1520.

Rubin, A.E. and Kallemeyn, G.W., 1989. Carlisle Lakes and Allan Hills 85151: Members of a new chondrite grouplet: Geochimica et Cosmochimica Acta 53, 3035-3044.

Rubin, A.E. and Kallemeyn, G.W., 1990. Lewis Cliff 85332: A unique carbonaceous chondrite: Meteoritics 25, 215-225.

Rubin, A.E. and Kallemeyn, G.W., 1994. Pecora Escarpment 91002: A member of the new Rumuruti (R) chondrite group: Meteoritics 29, 255-264.

Rubin, A.E., Kallemeyn, G.W. and Wasson, J.T., 2002. Ungrouped iron meteorite NWA 468: A low-Ca clinopyroxene-bearing impact-melt product: Geochimica et Cosmochimica Acta 66, 3657-3671.

Rubin, A.E., Kallemeyn, G.W., Wasson, J.T., Clayton, R.N., Mayeda, T.K., Grady, M., Verchovsky, A.B., Eugster, O., and Lorenzetti, S., 2003. Formation of metal and silicate nodules in Gujba: A new Bencubbin-like meteorite fall: Geochimica et Cosmochimica Acta 67, 3283-3298.

Rubin, A.E. and Li, Y., 2019. Formation and destruction of magnetite in CO3 chondrites and other chondrite groups: Geochemistry–Chemie der Erde 125528.

Rubin, A.E. and Mittlefehldt, D.W., 1992. Classification of mafic clasts from mesosiderites: Implications for endogenous igneous processes: Geochimica et Cosmochimica Acta 56, 827-840.

Rubin, A.E. and Moore, W.B., 2011. What’s up? Preservation of gravitational direction in the LAR 06299 LL impact-melt breccia: Meteoritics and Planetary Science 46, 737-747.

Rubin, A.E. and Pernicka, E., 1989. Chondrules in the Sharps H3 chondrite: Evidence for intergroup compositional differences among ordinary chondrite chondrules: Geochimica et Cosmochimica Acta 53, 187-195.

Rubin, A.E. and Read, W.F., 1984. The Brownell and Ness County (1894) L6 chondrites: Further sorting-out of Ness County meteorites: Meteoritics 19, 153-160.

Rubin, A.E., Sailer, A. and Wasson, J.T., 1999. Troilite in ordinary-chondrite chondrules: Implications for chondrule formation: Geochimica et Cosmochimica Acta 63, 2281-2298.

Rubin, A.E. and Scott, E.R.D., 1997. Abee and related EH chondrite impact-melt breccias: Geochimica et Cosmochimica Acta 61, 425-435.

Rubin, A.E. and Swindle, T.D., 2011. Flattened chondrules in the LAP 04581 LL5 chondrite: Evidence for an oblique impact into LL3 material and subsequent collisional heating: Meteoritics and Planetary Science 46, 587-600.

Rubin, A.E., Trigo-Rodriquez, J.M., Huber, H., and Wasson, J.T., 2007. Progressive aqueous alteration of CM carbonaceous chondrites: Geochimica et Cosmochimica Acta 71, 2361-2382.

Rubin, A.E., Trigo-Rodriquez, J.M., Kunihiro, J.M., Kallemeyn, G.W., and Wasson, J.T., 2005. Carbon-rich chondritic clast PV1 from the Plainview H-chondrite regolith breccia: Formation from H3 chondrite material by possible cometary impact: Geochimica et Cosmochimica Acta 69, 3419-3430.

Rubin, A.E., Ulff-Møller, F., Wasson, J.T., and Carlson, W.D., 2001. The Portales Valley meteorite breccia: Evidence for impact-induced metamorphism of an ordinary chondrite: Geochimica et Cosmochimica Acta 65, 323-342.

Rubin, A.E., Wang, D., Kallemeyn, G.W., and Wasson, J.T., 1988. The Ningqiang meteorite: Classification and petrology of an anomalous CV chondrite: Meteoritics 23, 13-23.

Rubin, A.E., Warren, P.H., Greenwood, J.P., Verish, R.S., Leshin, L.A., Hervig, R.L., Clayton, R.N., and Mayeda, T.K., 2000. Los Angeles: The most differentiated basaltic martian meteorite: Geology 28, 1011-1014.

Rubin, A.E. and Wasson, J.T., 1986. Chondrules in the Murray CM2 meteorite and compositional differences between CM-CO and ordinary chondrite chondrules: Geochimica et Cosmochimica Acta 50, 307-315.

Rubin, A.E. and Wasson, J.T., 1987. Chondrules, matrix and coarse-grained chondrule rims in the Allende meteorite: Origin, interrelationships and possible precursor components: Geochimica et Cosmochimica Acta 51, 1923-1937.

Rubin, A.E. and Wasson, J.T., 1988. Chondrules and matrix in the Ornans CO3 meteorite: Possible precursor components: Geochimica et Cosmochimica Acta 52, 425-432.

Rubin, A.E. and Wasson, J.T., 2011. Shock effects in “EH6” enstatite chondrites and implications for collisional heating of the EH and EL parent asteroids: Geochimica et Cosmochimica Acta 75, 3757-3780.

Rubin, A.E., Wasson, J.T., Clayton, R.N., and Mayeda, T.K., 1990. Oxygen isotopes in chondrules and coarse-grained chondrule rims from the Allende meteorite: Earth and Planetary Science Letters 96, 247-255.

Rubin, A.E., Ziegler, K. and Young, E.D., 2008. Size scales over which ordinary chondrites and their parent asteroids are homogeneous in oxidation state and oxygen-isotopic composition: Geochimica et Cosmochimica Acta 72, 948-958.

Rubin, A.E., Zolensky, M.E. and Bodnar, R.J., 2002. The halite-bearing Zag and Monahans (1998) meteorite breccias: Shock metamorphism, thermal metamorphism and aqueous alteration on the H-chondrite parent body: Meteoritics and Planetary Science 37, 125-141.

Sears D.W.G., Weeks, K.S. and Rubin A.E., 1984. First known EL5 chondrite: Evidence for a dual genetic sequence for enstatite chondrites: Nature 308, 257-259.

Smit, J. and Kyte, F.T., 1984. Siderophile-rich magnetic spheroids from the Cretaceous-Tertiary boundary in Umbria, Italy: Nature 310, 403-405.

Telus, M., Huss, G.R., Ogliore, R.C., Nagashima, K., Howard, D.L., Newville, M.G., and Tomkins, A.G., 2016. Mobility of iron and nickel at low temperatures: Implications
for 60Fe–60Ni systematics of chondrules from unequilibrated ordinary chondrites
: Geochimica et Cosmochimica Acta 178, 87-105.

Trigo-Rodriguez, J.M., Llorca, J., Madiedo, J.M., Tancredo, G., Edwards, W.N., Rubin, A.E., and Weber, P., 2010. The Berduc L6 chondrite fall: Meteorite characterization, trajectory, and orbital elements: Meteoritics and Planetary Science 45, 383-393.

Trigo-Rodriguez, J.M., Rubin, A.E. and Wasson, J.T., 2006. Non-nebular origin of dark mantles around chondrules and inclusions in CM chondrites: Geochimica et Cosmochimica Acta 70, 1271-1290.

Wang, D. and Rubin, A.E., 1987. Petrology of nine ordinary chondrite falls from China: Meteoritics 22, 97-104.

Warren, P.H., Greenwood, J.P. and Rubin, A.E., 2004. Los Angeles: A tale of two stones: Meteoritics and Planetary Science 39, 137-156.

Warren, P.H. and Rubin, A.E., 2010. Pigeionite-selective impact smelting in ureilites: Geochimica et Cosmochimica Acta 74, 5109-5133.

Warren, P.H. and Rubin, A.E., 2020. Trace element and textural evidence favoring lunar, not terrestrial, origin of the mini-granite in Apollo sample 14321: Icarus 347,

Warren, P.H., Rubin, A.E., Isa, J., Brittenham, S., Ahn, I., and Choi, B.-G., 2013. Northwest Africa 6693: A new type of FeO-rich, low-Δ17O, poikilitic cumulate achondrite: Geochimica et Cosmochimica Acta 107, 135-154.

Warren, P.H., Rubin, A.E., Isa, J., Gessler, N., Ahn, I., and Choi, B.-G., 2014. Northwest Africa 5738: Multistage fluid-driven secondary alteration in an extraordinarily evolved eucrite: Geochimica et Cosmochimica Acta 141, 199-227.

Wasson, J.T., Isa, J. and Rubin, A.E., 2013. Compositional and petrographic similarities of CV and CK chondrites: A single group with variations in textures and volatiles attributable to impact heating, crushing and oxidation: Geochimica et Cosmochimica Acta 108, 45-62.

Wasson, J.T., Kallemeyn, G.W. and Rubin, A.E., 1994. Equilibration temperatures of EL chondrites: A major downward revision in the ferrosilite contents of enstatite: Meteoritics 29, 658-661.

Wasson, J.T., Kallemeyn, G.W. and Rubin, A.E., 2000. Chondrules in the LEW85332 ungrouped carbonaceous chondrite; fractionation processes in the solar nebula: Geochimica et Cosmochimica Acta 64, 1279-1290.

Wasson, J.T., Krot, A.N., Lee, M.S., and Rubin, A.E., 1995. Compound chondrules: Geochimica et Cosmochimica Acta 59, 1847-1869.

Wasson, J.T., Matsunami, Y. and Rubin, A.E.,, 2006. Silica and pyroxene in IVA irons; possible formation of the IVA magma by impact melting and reduction of L-LL-chondrite materials followed by crystallization and cooling: Geochimica et Cosmochimica Acta 70, 3149-3172.

Wasson, J.T. and Rubin, A.E., 2003. Ubiquitous low-FeO relict grains in type-II chondrules and limited overgrowths on relicts and high-FeO phenocrysts following the final melting event: Geochimica et Cosmochimica Acta 67, 2239-2250.

Wasson, J.T. and Rubin, A.E., 2009. Composition of matrix in the CR chondrite LAP 02342: Geochimica et Cosmochimica Acta 73, 1436-1460.

Wasson, J.T. and Rubin, A.E., 2010. Metal in CR chondrites: Geochimica et Cosmochimica Acta 74, 2212-2230.

Wasson, J.T. and Rubin, A.E., 2010. Matrix and whole-rock fractionations in the Acfer 094 type-3.0 ungrouped carbonaceous chondrite: Meteoritics and Planetary Science 45, 73-90.

Wasson, J.T., Rubin, A.E. and Kallemeyn, G.W., 1993. Reduction during metamorphism of four ordinary chondrites: Geochimica et Cosmochimica Acta 57, 1865-1878.

Widom, E., Rubin, A.E. and Wasson, J.T., 1986. Composition and formation of metal nodules and veins in ordinary chondrites: Geochimica et Cosmochimica Acta 50, 1989-1995.

Miscellaneous Artifacts

Gard, F.S., Bozzano, P.B., Dominguez, S.A., Santos, D.M., and Daizo M.B., 2020. Chemical composition and structural features of an Egyptian funerary mask from the Ptolemaic period, studied by SEM and EPMA: Microscopy and Microanalysis 26(Suppl 1), 33-34.

Gard, F.S., Bozzano, P.B., Santos, D.M., Daizo M.B., Halac, E.B., and Reinoso, M., 2020. A multi-analytical approach for the study of pigments used to decorate an Egyptian cartonnage from Ptolemaic period: Microscopy and Microanalysis 26(Suppl 1), 1-2.

Monazite Geochronology

(see also Detection Limit and Trace-Element Analysis)

Cocherie, A. and Legendre, O., 2007. Potential minerals for determining U–Th–Pb chemical age using electron microprobe: Lithos 93, 288-309.

Hazarika, P., Mishra, B., Ozha, M.K., and Pruseth, K.L., 2017. An improved EPMA analytical protocol for U-Th-Pbtotal dating in xenotime: Age constraints from polygenetic Mangalwar Complex, Northwestern India: Chemie der Erde 77, 69-79.

Jercinovic, M.J. and Williams, M.L., 2005. Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: Background acquisition, interferences, and beam irradiation effects: American Mineralogist 90, 526-546.

Konečnýa, P., Kusiak, M.A. and Dunkley, D.J., 2018. Improving U-Th-Pb electron microprobe dating using monazite age references: Chemical Geology 484, 22-35.

Kumar, R.R. and Dwivedi, S.B., 2019. EPMA monazite geochronology of the granulites from Daltonganj, eastern India and its correlation with the Rodinia supercontinent: Journal of Earth System Science 128 234,

Loehn, C.W., 2011. Investigation of the Monazite Dating Technique: Ph.D., Virginia Polytechnic Institute, 85 pp.

Mezeme, E.B., Cocherie, A., Faure, M., Legendre, O., and Rossi, P., 2006. Electron microprobe monazite geochronology of magmatic events: Examples from Variscan migmatites and granitoids, Massif Central, France: Lithos 87, 276-288.

Ning, W., Wang, J., Xiao, D., Li, F., Huang, B., and Fu, D., 2019. Electron probe microanalysis of monazite and its applications to U-Th-Pb dating of geological samples: Journal of Earth Science 30(5), 952-963.

Ozha, M.K., Mishra, B., Hazarika, P., Jeyagopal, A.V., and Yadav, G.S., 2016. EPMA monazite geochronology of the basement and supracrustal rocks within the Pur-Banera basin, Rajasthan: Evidence of Columbia breakup in Northwestern India: Journal of Asian Earth Sciences 117, 284-303.

Scherrer, N.C., Engi, M., Gnos, E. Jakob, V., and Liechti, A., 2000. Monazite analysis; from sample preparation to microprobe age dating and REE quantification: Schweizerische Mineralogische und Petrographische Mitteilungen 80, 93-105.

Sorcar, N., Mukherjee, S., Pant, N.C., Dev, J.A., and Nishanth, N., 2021. Chemical dating of monazite: Testing of analytical protocol for U–Th–total Pb using CAMECA SXFive tactis EPMA at the National Centre for Earth Science Studies, Thiruvananthapuram, India: Journal of Earth System Science 130 234,

Spear, F.S., Cheney, J.T., Pyle, J.M., Harrison, T.M., and Layne, G., 2008. Monazite geochronology in central New England: Evidence for a fundamental terrane boundary: Journal of Metamorphic Geology 26, 317-329.

Tiwari, S.K. and Biswal, T.K., 2019. Dynamics EPMA Th-U-total Pb monazite geochronology and tectonic implications of deformational fabric in the lower-middle crustal rocks: A case study of Ambaji granulite, NW India: Tectonics 38, 2232-2254.

Williams, M.L., Jercinovic, M.J. and Hetherington, C.J., 2007. Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology: Annual Review of Earth and Planetary Sciences 35, 137-175.

Závada, P., Štípská, P., Hasalová, P., Racek, M., Jeřábek, P., Schulmann, K., Kylander-Clark, A., and Holder, R., 2021. Monazite geochronology in melt-percolated UHP meta-granitoids: An example from the Erzgebirge continental subduction wedge, Bohemian Massif: Chemical Geology 559, 119919, 19 pp.

Zhu, X.K. and O’Nions, R.K., 1999. Zonation of monazite in metamorphic rocks and its implications for high temperature thermochronology: A case study from the Lewisian terrain: Earth and Planetary Science Letters 171, 209-220.

Nuclear Materials (Provenance)

Balboni, E., Jones, N., Spano, T., Simonetti, A., and Burns, P.C., 2016. Chemical and Sr isotopic characterization of North America uranium ores: Nuclear forensic applications: Applied Geochemistry 74, 24-32.

Dorais, C., Simonetti, A., Corcoran, L., Spano, T.L., and Burns, P.C., 2019. Happy Jack Uraninite: A new reference material for high spatial resolution analysis of U-rich matrices: Geostandards and Geoanalytical Research 14(1), 125-132.

Sharp, N., McDonough, W.F., Ticknor, B.W., Ash, R.D., Piccoli, B.W., and Borg, D.T., 2014. Rapid analysis of trinitite with nuclear forensic applications for post-detonation material analyses: Journal of Radioanalytical and Nuclear Chemistry 302, 57-67.

Nuclear Waste Glass-Ceramics

Bardez-Giboire, I., Kidari, A., Magnin, M., Dussossoy, J.-L., Peuget, S., Caraballo, R., Tribet, M., Doreau, F., and Jégou, C., 2017. Americium and trivalent lanthanides incorporation in high-level waste glass-ceramics Journal of Nuclear Materials 492, 231-238.

Chen, H., Marcial, J., Ahmadzadeh, M., Patil, D., and McCloy, J., 2020. Partitioning of rare earths in multiphase nuclear waste glass-ceramics International Journal of Applied Glass Science 11, 660-675.

Patil, D.S., Konale, M., Gabel, M., Neill, O.K., Crum, J., Goel, A., Stennett, M., Hyatt, N.C., and McCloy, J.S., 2016. Impact of rare earth ion size on the phase evolution of MoO3-containing aluminoborosilicate glass-ceramics: Journal of Nuclear Materials 510, 539-550.

Sengupta, P., Mishra, R.K., Soudamini, N., Sen, D., Mazumder, S., Kaushik, C.P., Ajithkumar, T.J., and Banerjee, K., 2015. Study on fused/cast AZS refractories for deployment in vitrification of radioactive waste effluents: Journal of Nuclear Materials 467, 144-154.

Phase Equilibria

(see also Building Materials)

Arnout, S., Durinck, D., Guo, M., Blanpain, B., and Wollants, P., 2008. Determination of CaO–SiO2–MgO–Al2O3–CrOx Liquidus: Journal of the American Ceramic Society 91(4), 1237-1243.

Feng, D., Zhang, J., Li, M., Chen, M., and Zhao, B., 2020. Phase Equilibria of the SiO2–V2O5 system: Ceramics International 46, 24053-24059.

Shevchenko, M. and Jak, E., 2018. Experimental phase equilibria studies of the PbO–SiO2 system: Journal of the American Ceramic Society 101, 458-471.

Sieber, M.J., Wilke, F. and Koch-Müller, M., 2020. Partition coefficients of trace elements between carbonates and melt and suprasolidus phase relation of Ca-Mg-carbonates at 6 GPa: American Mineralogist 105, 922-931.

Pigments, Paints and Paintings

(see also Ancient Ceramics, Pottery and Glazes)
(see also Miscellaneous Artifacts)

Aloupi, E., Karydas, A.G. and Paradellis, T., 2000. Pigment analysis of wall paintings and ceramics from Greece and Cyprus. The optimum use of X-ray spectrometry on specific archaeological issues: X-Ray Spectrometry 29, 18-24.

Fermo, P., Piazzalunga, A., de Vos, M., and Andreoli, M., 2013. A multi-analytical approach for the study of the pigments used in the wall paintings from a building complex on the Caelian Hill (Rome): Applied Physics A, 113, 1109-1119.

Gard, F.S., Santos, D.M., Daizo, M.B., Mijares, J.L, Bozzano, P.B., Danon, C.A., Reinoso, M., and Halac, E.B., 2020. A noninvasive complementary study of an Egyptian polychrome cartonnage pigments using SEM, EPMA, and Raman spectroscopy: Surface and Interface Analysis, DOI: 10.1002/sia.6866.

Klepka, M., Lawniczak-Jablonska, K., Jablonski, M., Wolska, A., Minikayev, R., Paszkowicz, W., Przepiera, A., Spolnik, Z., and Van Grieken, R., 2005. Combined XRD, EPMA and X-ray absorption study of mineral ilmenite used in pigments production: Journal of Alloys and Compounds 401, 281-288.

Samal, S., Mohapatra, B.K. and Mukherjee, P.S., 2010. The effect of heat treatment on titania slag: Journal of Minerals & Materials Characterization & Engineering 9(9), 795-809.

Samal, S., Mohapatra, B.K., Mukherjee, P.S., and Chatterjee, S.K., 2009. Integrated XRD, EPMA and XRF study of ilmenite and titania slag used in pigment production: Journal of Alloys and Compounds 474, 484-489.

Precious Metals

(see also Ancient Metals, Coins and Metallurgy)

Gervilla, F., Cabri, L.J., Kojonen, K., Oberthur, T., Weiser, T.W., Johanson, B., Sie, S.H., Campbell, J.L., Teesdale, W.J., and Laflamme, J.H.G., 2004. Platinum-group element distribution in some ore deposits: Results of EPMA and micro-PIXE analyses: Microchimica Acta 147, 167-173.

Mederski, S., Pršek, J., Dimitrova, D., and Hyseni, B., 2021. A combined EPMA and LA-ICP-MS investigation on Bi-Cu-Au mineralization from the Kizhnica ore field (Vardar Zone, Kosovo): Minerals 11, 1223. min11111223, 37 pp.

Osbahr, I., Krause, J., Bachmann, K., and Gutzmer, J., 2015. Efficient and accurate identification of platinum-group minerals by a combination of mineral liberation and electron probe microanalysis with a new approach to the offline overlap correction of platinum-group element concentrations: Microscopy and Microanalysis 21(Suppl 5), 1080-1095.

Teh, G.H., Latib, H.M., Jushu, Z.M., and Sulaiman, A.B., 1999. EPMA characterisation and geochemistry of gold deposits of Peninsular Malaysia–Genetic implications: GEOSEA ’98 Proceedings, Geological Society of Malaysia Bulletin 43, 299-306.

Rare Earth Elements (REEs)

(see also Nuclear Materials (Provenance))
(see also Nuclear Waste Glass-Ceramics)

Laputina, I.P., Batyrev, V.A. and Yakushev, A.I., 1999. A new EPMA technique for determination of rare earth elements with the use of automated peak-overlap and modelled background corrections: Journal of Analytical Atomic Spectrometry 14, 465-469.


Llovet, X., Moy, A., Pinard, P.T., and Fournelle, J.H., 2021. Electron probe microanalysis: A review of recent developments and applications in materials science and engineering: Progress in Material Science 120, 100818, 90 pp.

Mackenzie, A.P., 1993. Recent progress in electron probe microanalysis: Reports on Progress in Physics 56, 557-604.

Salter, W.J.M., 1973. A review of some industrial applications of microanalysis: Micron 4, 307-331.

Soil Analysis

Singletary, S.J. and Hanna, H.D., 2018. Forensic soil analysis using the electron microprobe: The Markice-Bowling case: Microscopy and Microanalysis 24(Suppl 1), 1182-1183.

Superconductors and Magnetism

Hehenkamp, T.H.G., 1992. Characterization of high-temperature superconductors by electron microprobe analysis: Mikrochimica Acta 107, 273-277.

Hishinuma, Y., Itoh, H., Arakawa, M., Nagano, S., Yoshizawa, S., and Kohayashi, S., 2002. The microstructure and superconducting properties of large single-domain superconductors prepared by a mixture of Y-123 and RE-211 phase precursors: Superconductor Science and Technology 15, 769-773.

Hu, C., Gao, A., Berggren, B.S., Li, H., Kurleto, R., Narayan, D., Zeljkovic, I., Dessau, D., Xu, S., and Ni, N., 2021. Growth, characterization, and Chern insulator state in MnBi2Te4 via the chemical vapor transport method: Physical Review Materials 5, 124206, 8 pp.

Hu, C., Lien, S.-W., Feng, E., Mackey, S., Tien, H.-J., Mazin, I.I., Cao, H., Chang, T.-R., and Ni, N., 2021. Tuning magnetism and band topology through antisite defects in Sb-doped MnBi4Te7: Physical Review B 104, 054422, 10 pp.

Karduck, P., Štrbački, Ž. and Bonnenberg, D., 1990. Quantitative electron probe microanalysis of Y-Ba-Cu-O superconducting materials: Mikrochimica Acta 101, 161-172.

Lee, S.H. and Choi, Y., 2009. Effect of oxide dopants on the superconducting properties of YBCO superconductor: Physica B: Condensed Matter 404, 734-736.

Mackenzie, A.P., 1991. Accurate metal and oxygen analyses of cuprate single crystals by electron probe microanalysis: Physica A 178, 365-376.

McGee, J.J., Obien, J.M., Wilson, R.R., and Payne, J.E., 1999. Electron probe microanalysis of Bi-Sr-Ca-Cu superconductors with transition metal substitutions: Microscopy and Microanalysis 5(Suppl 2), 576-577.

Sugihara, S. and Fujitani, H., 1995. Joining of Y1Ba2Cu3O7-x and Pb(Zr,Ti)O3, and their interfaces: Journal of the European Ceramic Society 15, 1043-1046.

Tretyakov, V.V., Kazakov, S.V., Bobyl, A.V., and Konnikov, S.G., 2000. Study of thin films of high temperature superconductors based on YBaCuO by EPMA: Mikrochimica Acta 132, 365-375.

Zandbergen, H.W., Gortenmulder, T.J., Sarrac, J.L., Harrison, J.C., de Andrade, M.C., Hermann, J., Han, S.H., Fisk, Z., Maple, M.B., and Cava, R.J., 1994. Structure and composition analysis of the phases in the system Th-Pd-B-C containing superconductors with Tc= 14.5 K and Tc=21 K: Physica C 232, 328-336.

Zhao, W., Shi, Y., Zhou, D., Dennis, A.R., and Cardwell, D.A., 2018. Quantification of the level of samarium/ barium substitution in the Ag-Sm1+xBa2−xCu3O7−δ system: Journal of the European Ceramic Society 38, 5036-5042.


(see also Beam-Induced Element Mobility/Volatility)

Lowe, D.J., 2011. Tephrochronology and its application: A review: Quaternary Geochronology 6, 107-153.

Wulf, S., Keller, J., Satow, C., Gertisser, C., Kraml, M., Grant, K.M., Appelt, O., Vakhrameeva, P., Koutsodendris, A., Hardiman, M., Schulz, H., and Pross, J., 2020. Advancing Santorini’s tephrostratigraphy: New glass geochemical data and improved marine-terrestrial tephra correlations for the past ∼360 kyrs: Earth-Science Reviews 200, 102964, 19 pp.

Thin Films

(see also Superconductors)

Jung, Y.H., Baik, S.J. and Ahn, S.B., 2019. Investigation of Zircaloy-fuel interaction in failed spent PWR fuel using EPMA: Journal of Nuclear Materials 517, 349-355.

Oliva, F.Y., Leiva, E.P.M., Lener, G., Barraco, D.E., and Trincavelli, J.C., 2019. Study of the spontaneous oxidation of sodium in air by EPMA and Monte Carlo simulations: Applied Surface Science 480, 1093-1099.

Oliveira, J.C., Cavaleiro, A. and Brett, M.A., 2000. Influence of sputtering conditions on corrosion of sputtered W–Ti–N thin film hard coatings: Salt spray tests and image analysis: Corrosion Science 42, 1881-1895.

Procop, M., Radtke, M., Krumrey, M., Hasche, K., Schädlich, S., and Frank, W., 2002. Electron probe microanalysis (EPMA) measurement of thin-film thickness in the nanometre range: Analytical and Bioanalytical Chemistry 374, 631-634.

Stanford, J.A., Teslich N., Donald, S., Saw, C.K., Gollott, and Dinh, L.N., 2020. Measurement of PuO2 film thickness by electron probe microanalysis (EPMA) calibration curve method: Journal of Nuclear Materials 530, 151968.

Webb, J.D., Rose, D.H., Niles, D.W., Swartzlander, A., and Al-Jassim, M.M., 1997. FTIR, EPMA, Auger, and XPS analysis of impurity precipitates in CdS films: 26th IEEE Photovoltaic Specialists Conference, September 29-October 3, 1997, Anaheim, California, 4 pp.


(see also Gems and Gemology)

Kalliomäkia, H., Wagner, T., Fusswinkel, T., and Sakellaris, G., 2017. Major and trace element geochemistry of tourmalines from Archean orogenic gold deposits: Proxies for the origin of gold mineralizing fluids: Ore Geology Reviews 91, 906-927.

Sciuba, M., Beaudoin, G. and Makvandi, S., 2021. Chemical composition of tourmaline in orogenic gold deposits: Mineralium Deposita 56, 537-560.

Sun, Z., Palke, A.C., Breeding, C.M., and Dutrow, B.L., 2019. A new method for determining gem tourmaline species by LA-ICP-MS: Gems & Gemology 55(1), 2-17.

ZAF Correction and K-Ratio Optimization

Bishop, H.E., 1968. The absorption and atomic number corrections in electron-probe X-ray microanalysis: British Journal of Applied Physics 2(1), 673-684.

Duncumb, P. and Reed, S.J.B., 1968. The calculation of stopping power and backscatter effects in electron probe microanalysis: In Quantitative Electron Probe Microanalysis, Heinrich, K.F.J. (Ed.), National Bureau of Standards Special Publication 298, 133-154.

Fournelle, J., Moy, A., Nachlas, W., and Donovan, J., 2020. The EPMA matrix correction: All elements must be present for accuracy: Four examples with B, C, O and F: Microscopy and Microanalysis 26(Supp. 2), 58-59.

Heinrich, K.F.J. and Myklebust, R.L., 1972. A simple correction procedure for quantitative electron probe microanalysis: National Bureau of Standards Technical Note 719, 50 pp.

Lane, S.J. and Dalton, J.A., 1994. Electron microprobe analysis of geological carbonates: American Mineralogist, 79, 745-749.

Marshall, A.T. and Condron, R.J., 1987. A simple method of using Φ(pz) curves for the X-ray microanalysis of frozen-hydrated bulk biological samples: Micron and Microscopica Acta 18(1), 23-26.

Poole, D.M., 1968. Progress in the correction for the atomic number effect: In Quantitative Electron Probe Microanalysis, Heinrich, K.F.J. (Ed.), National Bureau of Standards Special Publication 298, 93-131.

Schalkoord, D., Karduck, P. and Rehbach, W.P., 1990. Optimization of K-ratio measurements for electron probe microanalysis: Scanning 12, 185-192.


Fu, B., Page, Z., Cavosie, A.J., Fournelle, J., Kita, N.T., Lackey, J.S., Wilde, S.A., and Valley, J.W., 2008. Ti-in-zircon thermometry: Applications and limitations: Contributions to Mineralogy and Petrology 156, 197-215.

Hopkins, M.D., Harrison, T.M. and Manning, C.E., 2010. Constraints on Hadean geodynamics from mineral inclusions in >4 Ga zircons: Earth and Planetary Science Letters 298, 367-376.

Nasdala, L., Kronz, A., Wirth, R., Vaczi, T., Perez-Soba, C., Willner, A., and Kennedy, A.K., 2009. The phenomenon of deficient electron microprobe totals in radiation-damaged and altered zircon: Geochimica et Cosmochimica Acta 73, 1637-1650.